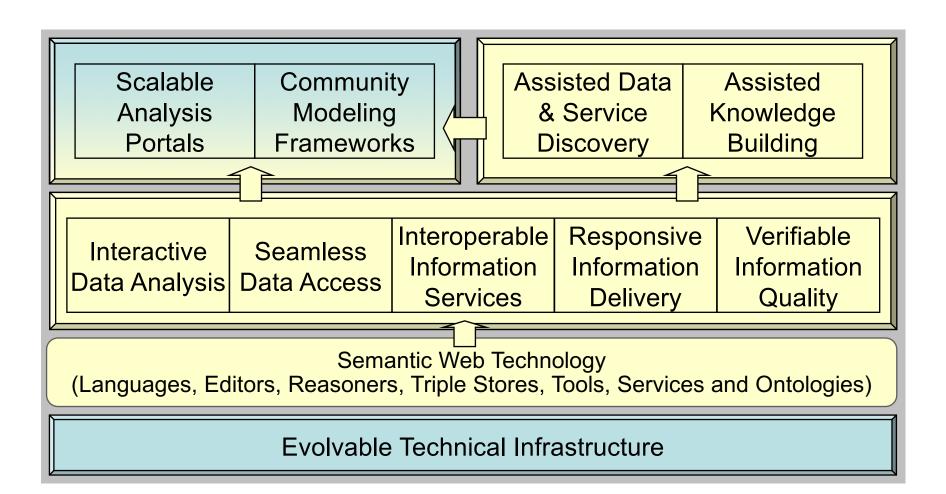
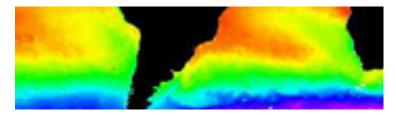


Semantic Web Infusion Roadmap V1.0 Gap Analysis 1.6 NASA/ESDSWG/TIWG April-November 2008 Semantic Web sub-group Presented to ESIP-STC April 2018

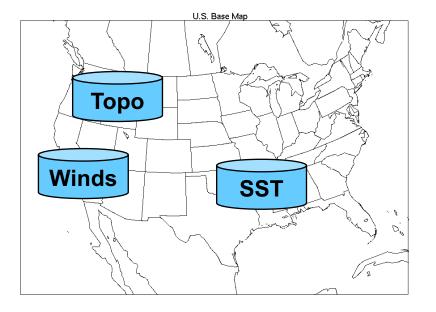
Background: Technology Infusion Process

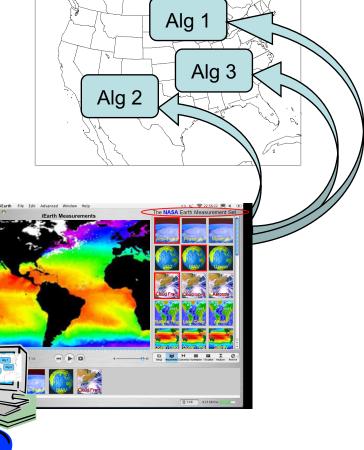

- Established a capability vision for Earth science information systems
- Identified Interoperable Information Services as a key capability in the vision •
- Identified semantic web as one of the primary supporting technologies •
- Currently defining a roadmap for semantic web technology infusion

Infusing Semantic Web Will Help Realize the Vision for all Middleware Services and Assisted Capabilities


Interactive Data Analysis Inventory

- Current technologies
 - Visual grammars, shared terminologies for visual properties
- Needed
 - Semantically-aware visual programming environments and high-level analysis tools
 - Tagging data properties with metadata, mapping to non-jargon vocabularies
 - Data mediation (units, coordinates)
 - Vocabulary translation for machine-tomachine processing
 - Semantic support for coordinate systems/ projections/ scale factors/ offsets/ special values
 - Support for data quality
 - Support for displaying errors
 - Understanding of minimum/ maximum, color bars (and relation to data)

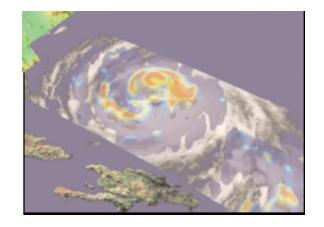

$$\rho C_{Pg} u \frac{\partial T}{\partial x} = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + G$$



- Current technologies
 - Community network data access protocols (OpenDAP, WMS/WCS, WebDAV, GridFTP)
 - Established data server tools (MapServer, GDS/LAS, ArcWeb) integrate data analysis in local environment from outside sources
- Needed technologies
 - Semantic metadata (OWL-S) to enhanced existing hard-coded services (WxS)
 - Data-type ontology
 - Services ontology (inputs/ outputs) for service chaining
 - Semantic markup for sensors and scheduling/ planning
 - Tools interoperating with other tools at a semantic level

Interoperable Information Services Inventory

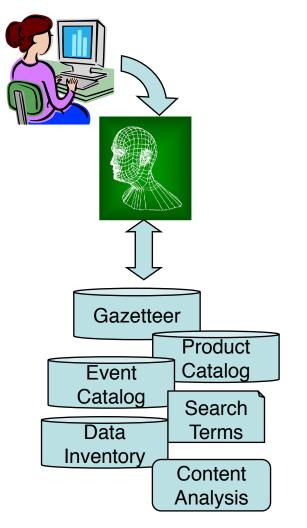
- Current technologies
 - Network service protocols (SOAP, Java RMI, OPeNDAP, CORBA)
 - Utility/grid computing protocols & toolkits (Globus)
- Needed technologies
 - Service and domain ontologies working synergistically
 - Services that know about other services, and their levels
 - Services understand terms, quantities, units, coordinates
 - Semantic service registry
 - Smart service chaining
 - Smart service gap filling



September 2008

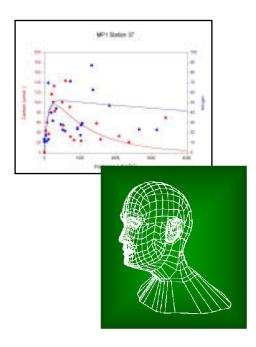
Responsive Information Delivery Inventory


- Current technologies
 - Optical networks (National LambdaRail)
 - Peer-to-peer networks with swarming (Modster)
 - Direct downlink (MODIS/AIRS DDL)
 - Sensor tasking in response to event/ prediction
- Needed technologies
 - Semantic service bindings and groundings include resource estimates, priority scheduling, spectrum of data latency in common terms
 - Late semantic binding for real-time streams
 - Semantic event detection and tagging

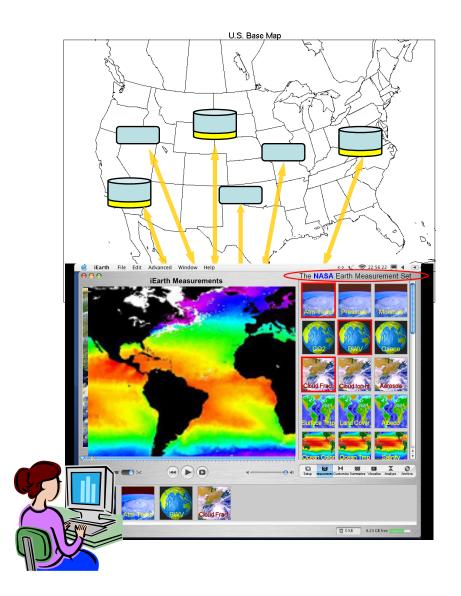


- Current technologies
 - Data pedigree algorithms (Ellis)
 - Machine-readable formats (XML) and common semantic service ontology (OWL-S) including data-types
- Needed technologies
 - Data quality (all dimensions conveyed in meaningful terms), uncertainty and provenance ontologies
 - Domain ontologies include domain and range value restrictions
 - Making provenance from two or more services interoperable
 - Smart quality propagation from two or more information services
 - Rulesets, explanation, trust and proof inferencing

- Current technologies
 - Smart query with term expansion, narrowing, reasoning, abstracting selection workflows, capturing concepts of discovery, inventory and item/granule -level in finding data
 - Data and service description standards, web service directories, syndication services, topic/ concept maps
 - Established directory services (GCMD, ECHO, THREDDS)
 - Domain ontologies (SWEET, MMI, VSTO, ...), rule-based logic, semantic query
- Needed technologies
 - Community standards are needed to avoid wasted and inconsistent efforts
 - Smart mediation among catalogs that are using ontologies and/or standard data model
 - Semantic service registry
 - Data-type and service ontologies
 - Smart discovery of virtual data products (want data but need service to create it for you)
 - Smart crawlers to pull



- Current technologies
 - Data mining algorithms (Support vector machines, independent component analysis, rule induction) and ontologies
 - Data mining toolkits (Adam, D2K, Darwin) and plug-ins (IMAGINE, ENVI, ArcGIS) with semantic annotations
 - Data and service description standards, web service directories, syndication services, topic maps
- Needed technologies
 - Cross-domain data mining and fusion and rule-based smart data mining and fusion
 - Ontologies for visualization and analysis, metadata annotation with ontologies
 - Conversion of folksonomies to ontologies
 - Formalizing the long-term de-facto standards into formal ontologies



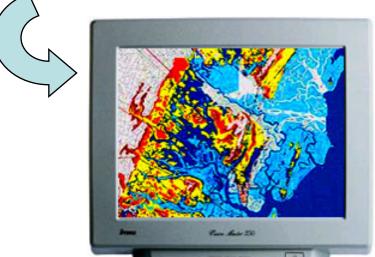
Scalable Analysis Portals Inventory

- Current technologies
 - JSR168/268 porlets
 - Several implementations;
 Gridsphere, JetSpeed, et c.

Needed technologies

- Ontologies for portal modal functions
- APIs for accessing domain ontologies
- Capabilities to propagate provenance and other key metadata
- Ontology to describe analysis functions and results

NASA


Community Modeling Frameworks Inventory

- Current technologies
 - Frameworks: ESMF, SPMF, etc.
 - Models: WRF, ROM, etc.
 - Earth System Curator

Needed technologies

- Ontologies for model component and framework functions
- APIs for accessing domain ontologies
- Capabilities to generate provenance and other key metadata
- Use of data-type ontologies, units (point back to lower layer)
- Semantics of assumptions, especially among models
- Semantics to facilitate data assimilation

Keys to notations in gap analysis

Keys to notations in gap analysis

Symbols:
Warning = gap

• Color scheme (unless otherwise noted)

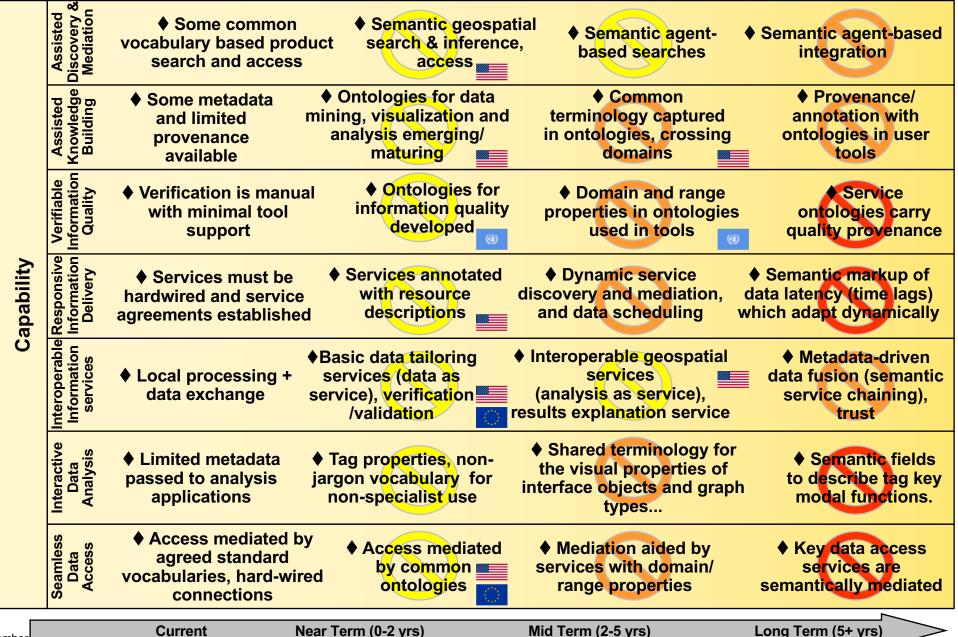
- Distance measure:
 - NASA = 🚳
 - Earth science =
 - Country = flag
- Examples:
 - outside US 📟
 - in US, outside NASA and ES
 - in ES, outside NASA

Semantic Web Roadmap

Results	Outcome	 Improved Information Sharing 	Increased Collaboration & Interdisciplinary Science		Acceleration of Knowledge Production		Revolutionizing now science is done	
	Output Se	 Geospatial emantic services established 	;	 Geospatial semant services proliferate 	ic	Scientific semantic assisted services		Autonomous inference of cience results
oility	♦ Some common vocabulary based product search and access		ed	Semantic geospatial search & inference, access		Semantic agent- based searches		Semantic agent- ised integration
Capability	Interoperable Information Infrastructure	Inferoperable Information Infrastructure exchauge		(data as service), verification/		 Interoperable geospatial services (analysis as service), results explanation service 	(se	Metadata-driven data fusion emantic service haining), trust
Technology		SWEET core 1.0 based on GCMD/CF	SWEET core 2.0 based on best practices decided from community			semantic callable able to utiliz		Reasoners able to utilize SWEET 4.0
Techn	Languages/ Reasoning	♦ RDF, OWL, OWL-S	♦ Geospatial reasoning, OWL-Time			Numerical reasoning	Scientific reasoning	
		Current	N	ear Term (0-2 yrs)	Μ	lid Term (2-5 yrs)	Lo	ng Term (5+ yrs)


Semantic Web Roadmap - Gap Analysis

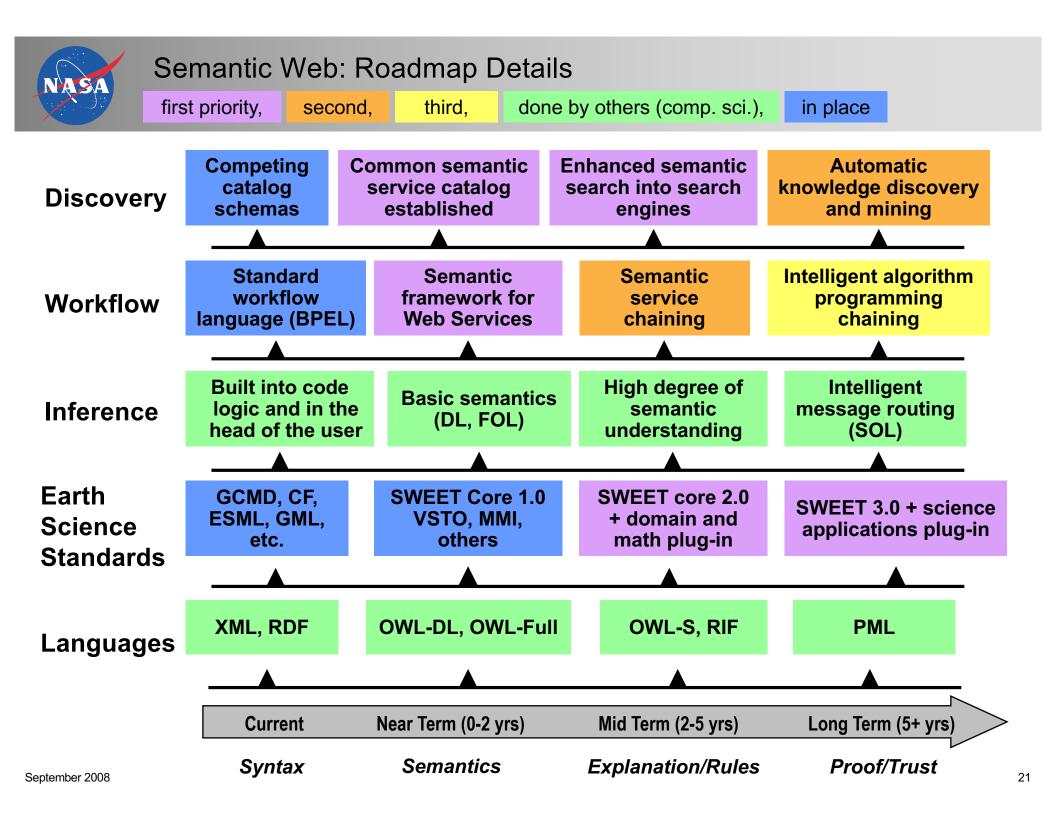
	Yellow - okay, or some effort, not proven Orange - fair,		 Increased Collaboration & terdisciplinary Science 	 Acceleration of Knowledge Production 	Revolutionizing how science is done	
\bigcirc		definite gap, effort needed Red - none or		Geospatial semantic services proliferate	Scientific semantic assisted services	 Autonomous inference of science results
oil	poor, serious gap, effort required Să≥ and access		Semintic geo pai al search & inference access	Sin ntic agent- bailed size ches	Senantic gent- based in gration	
Capabil	Interoperable Information Infrastructure	Interoperable Information Information Infrastructure Exchange		 Proic data tailing sirvices (d ta a service), vific ion/ vancation 	Interperable geos tial prvices ina vsi as ser ice) sults explanation service	Met data driven cata fusi in (sen antic s rvice chan.inc), trust
Technology		SWEET core 1.0 based on GCMD/CF	SWEET core 2.0 based on best practices decided from community		SV CEN 3.0 with se ia. tic oillable interfices is standard program.	
Techn	Languages/ Reasoning	♦ RDF, OWL, OWL-S	♦ Geospatia reasonin, O. Y., ime		 Interioul Interioul 	♦ Scientinc r aso, ir j
		Current	Ne	ear Term (0-2 yrs)	Mid Term (2-5 yrs)	Long Term (5+ yrs)



Semantic Web Roadmap - Gap Analysis

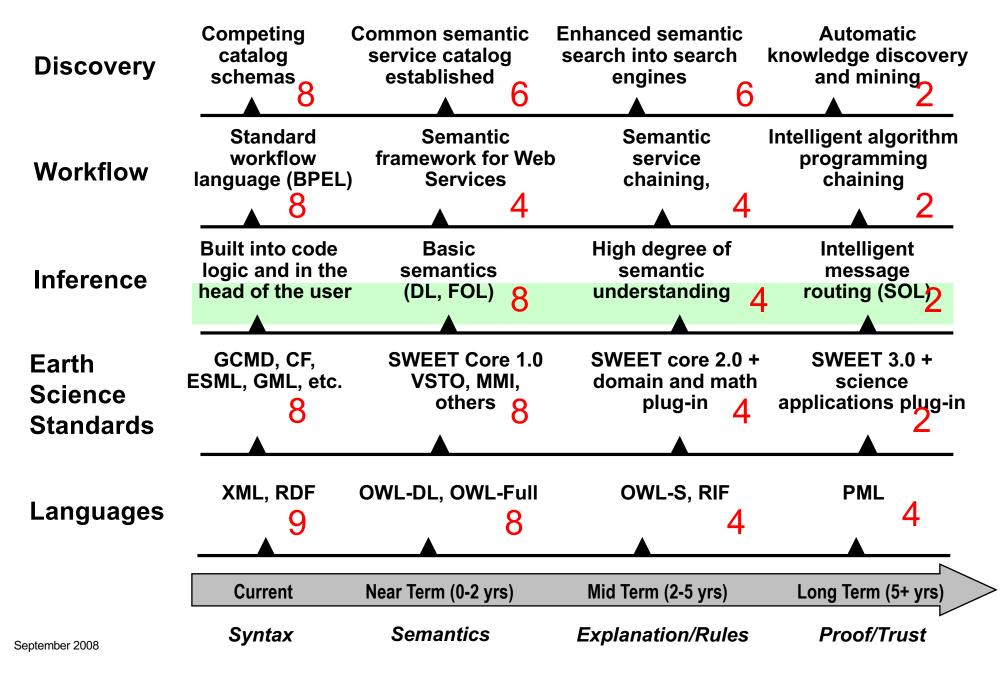
	ance measure: ASA = 💿		reased pration & inary Science	Acceleration of Knowledge Production	Revolutionizing how science is done
	arth science = 🧼 ountry = 🎫 🎫		ial semantic proliferate	 Scientific semantic assisted services 	 Autonomous inference of science results
ility	s o p product sear	CII inforon	emantic tial search &	Semantic agent- based searches	 Semantic agent- based integration
Capability	tailor tailor tailor tailor tailor tailor tailor (data exchange ve		asic data Ig services Is service), fication/ idation	Interoperable geospatial services (analysis as service), results explanation service	 Metadata-driven data fusion (semantic service chaining), trust
ology	August SWEET core 1.0 based on GCMD/CF	SWEET core 2.0 based on best practices decided from community		SWEET 3.0 with semantic callable interfaces via standar programming language	d Reasoners able to utilize SWEET 4.0
Technology	Languages/ Reasoning OMT-S	♦ Geosp reasoning, O		Numerical reasoning	 Scientific reasoning
	Current	Near Term (0-	2 yrs)	Mid Term (2-5 yrs)	Long Term (5+ yrs)

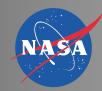
Semantic Web Roadmap (expanded capability)

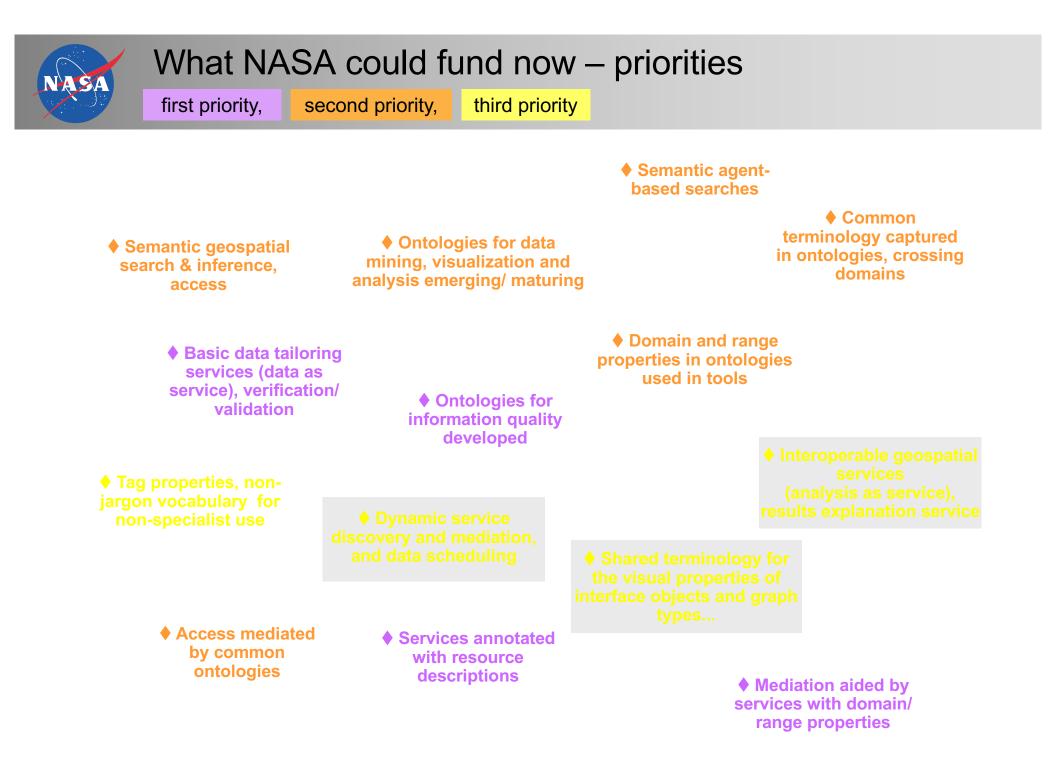


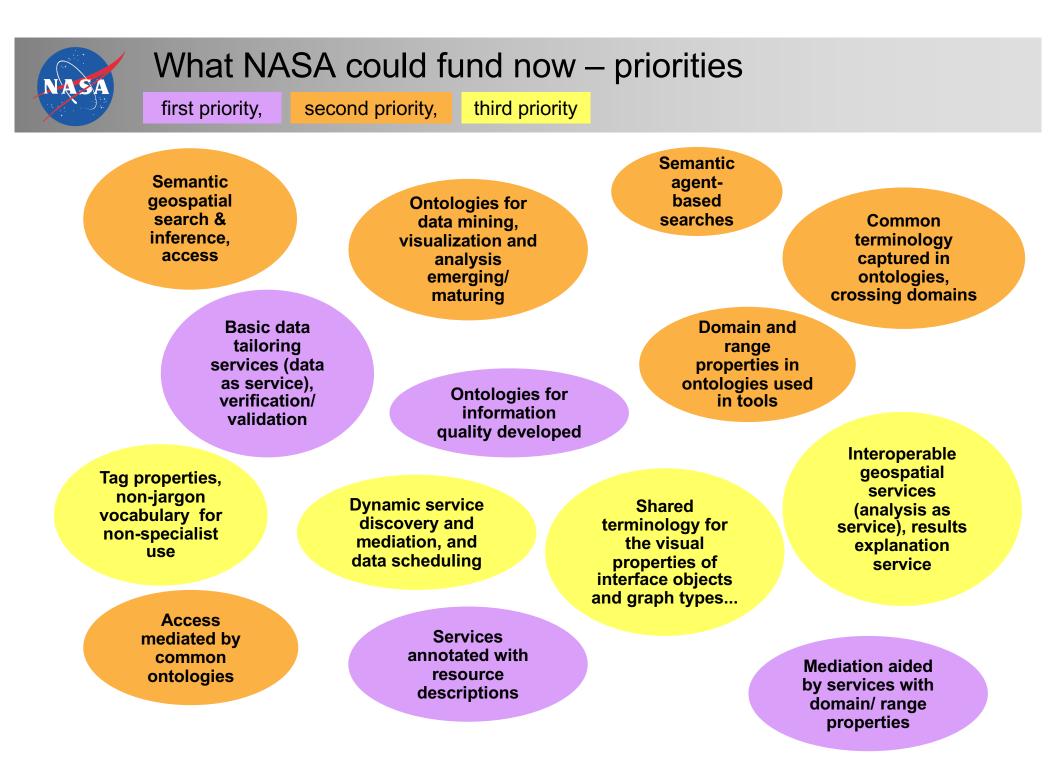
AS		Roadmap - getting first priority, second prio	rom near-term to mid-te rity, third priority	rm
	Assisted Discovery & Mediation	Semantic geospatial search & inference, access	-> requires agent development and vocabulary for agent characterization	Semantic agent- based searches
	Assisted Knowledge Building	Ontologies for data mining, visualization and analysis emerging/ maturing	-> requires mature (domain and data-type) ontologies with community endorsement and governance and a robust integration framework	♦ Common terminology captured in ontologies, crossing domains
	Verifiable Information Quality	Ontologies for information quality developed	-> requires mature quality and uncertainty ontologies with domain and range properties added and populated	Domain and range properties in ontologies used in tools
Capability		Services annotated with resource descriptions	-> requires semantic service (ontology) registry	Dynamic service discovery and mediation, and data scheduling
0	nteroperableResponsive Information services Delivery	 Basic data tailoring services (data as service), verification/ validation 	-> requires service to implement v/v, new descriptions of analyses, developing explanation	Interoperable geospatial services (analysis as service), results explanation service
	Interactive Data Analysis	Tag properties, non- jargon vocabulary for non-specialist use	-> requires development of portal modal function vocabulary and ontology, link to domain context and data structure	Shared terminology for the visual properties of interface objects and graph types
	Seamless Data Access	Access mediated by common ontologies	-> requires adding properties to classes in ontologies and populating instances with expert agreement	Mediation aided by services with domain/ range properties
		Near Term (0-2 yrs)		Mid Term (2-5 yrs)

NAS	A	Roadmap - getting from near-term to mid-term							
		first priority, second prio	ority, third priority -> requires mature (domain and						
	Assisted Knowledge Building	Ontologies for data mining, visualization and analysis emerging/ maturing	data-type) ontologies with community endorsement and	Common terminology captured in ontologies, crossing domains					
	Responsive Information Delivery	 Services annotated with resource descriptions 	-> requires semantic service (ontology) registry	Dynamic service discovery and mediation, and data scheduling					
	Verifiable Information Quality	Ontologies for information quality developed	-> requires mature quality and uncertainty ontologies with domain and range properties added and populated	Domain and range properties in ontologies used in tools					
Capability	Interoperable Information services	Basic data tailoring services (data as service), verification/ validation	-> requires service to implement v/v, new descriptions of analyses, developing explanation	♦ Interoperable geospatial services (analysis as service), results explanation service					
	Seamless Data Access	Access mediated by common ontologies	-> requires adding properties to classes in ontologies and populating instances with expert agreement	Mediation aided by services with domain/ range properties					
	Interactive Data Analysis	Tag properties, non- jargon vocabulary for non-specialist use	-> requires development of portal modal function vocabulary and ontology, link to domain context and data structure	Shared terminology for the visual properties of interface objects and graph types					
	Assisted Discovery & Mediation	Semantic geospatial search & inference, access	-> requires agent development and vocabulary for agent characterization	Semantic agent- based searches					
_									


Near Term (0-2 yrs)


Mid Term (2-5 yrs)


Semantic Web: Roadmap Details – TRL estimate



Technology Inventory for Semantic Web

- Languages
 - OWL Web Ontology Language (W3C Recommendation), OWL 2 coming soon
 - RDF Resource Description Framework (W3C Recommendation)
 - OWL-S/SWSL/SWSM/SAWSDL Web Services (W3C Submission) not standard (2018: ***)
 - SWRL Semantic Web Rule Language (W3 Working Draft) unlikely to be recommended
 - Rule Interchange Format (RIF) (W3 Submission)!!! (2018: W3 Recommendation)
 - PML Proof Markup Language defacto standard (2018: PROV superseded PML and OPM)
 - ODM/MOF Ontology Definition Metamodel/Meta Object Facility (OMG) (2018: Gone)
- Editors: Protégé, SWOOP, Medius, SWeDE, CMAP/COE (2018: Most gone)
- Reasoners
 - Pellet, Racer, Medius KBS, FACT++, fuzzyDL, KAON2, MSPASS, QuOnto
- Query Languages
 - SPARQL (W3 Recommendation), XQUERY, SeRQL, OWL-QL, RDFQuery
- Other Tools for Semantic Web
 - Search: SWOOGLE swoogle.umbc.edu
 - Collaboration: <u>www.planetont.org</u>
 - Ontology repository/ registry: needed (three efforts now: BIOPORTAL, OMV and OOR)
 - Other: Jena, SeSAME/SAIL, Mulgara, Eclipse, KOWARI
 - Semantic wiki: OntoWiki, SemanticMediaWiki
 - Semantic content; Drupal,
 - Inference Web (IW; iw.rpi.edu)
- Semantic Standards for Earth Science
 - SWEET, VSTO, MMI, GeoSciML (all have governance models)
 - Need to promote domain and ES-specific service ontology development/ governance

What NASA could fund now – priorities

first priority,

second priority, third priority

- Basic data tailoring services (data as service), verification/ validation
- Ontologies for information quality developed ۲
- Services annotated with resource descriptions ۲
- Mediation aided by services with domain/ range properties ۲
- Access mediated by common ontologies ۲
- Ontologies for data mining, visualization and analysis emerging/ ۲ maturing
- Domain and range properties in ontologies used in tools ٠
- Common terminology captured in ontologies, crossing domains ullet
- Semantic geospatial search & inference, access ۲
- Semantic agent-based searches ۲
- Shared terminology for the visual properties of interface objects and • graph types...
- Interoperable geospatial services (analysis as service), results ۲ explanation service
- Dynamic service discovery and mediation, and data scheduling ۲
- Tag properties, non-jargon vocabulary for non-specialist use

Ongoing Steps

- Baseline metrics for current capabilities
 - TRLs, number of implementations, effort to add new data/ service, development time, new results
 - How to measure? TRL in/out, Technology Readiness
 Assessment, project-defined metrics, impacts/ nuggets
- Communicate findings to NASA
 - awareness of gaps need to communicate where there are gaps and the implications for NASA
 - recommendations for solicitation wording that would encourage research to fill gaps
- Recommendations
 - NASA to ensure coverage in domain application areas of semantics
 - Identify ways to encourage technical/ vocabulary progress to support capability progress
 - Leverage non-NASA, non-ES, and non-US efforts